PolyU Makes Great Strides in Ultrasound Diagnosis for Breast Cancer

Share Article

Making use of advanced ultrasound technology, researchers of The Hong Kong Polytechnic University (PolyU) have successfully developed a low-cost and compact Ultrasound Elasticity Imaging System for the examination and diagnosis of breast cancer.

Development of PC- and PDA-based ultrasound measurement and imaging devices

Making use of advanced ultrasound technology, researchers of The Hong Kong Polytechnic University (PolyU) have successfully developed a low-cost and compact Ultrasound Elasticity Imaging System for the examination and diagnosis of breast cancer.

This breakthrough is the hard work of a research team led by Professor Zheng Yongping, Professor of PolyU's Department of Health Technology and Informatics (HTI) and Associate Director of PolyU's Research Institute of Innovative Products and Technologies. Working in collaboration with a Guangdong-based ultrasound diagnostic company, Shantou Institute of Ultrasound Instruments Co. Ltd. (SIUI), PolyU researchers have implemented their novel algorithm into conventional ultrasound scanner for achieving elasticity imaging, thereby cutting down the cost by leaps and bounds for ultrasound scanners with such a function. PolyU has already filed a patent for this breakthrough.

While existing ultrasound diagnostic machines with elasticity function is bulky and of the size of a three-gate refrigerator, PolyU-developed Ultrasound Elasticity Imaging System is compact and robust like a desktop computer. Unlike traditional million-dollar-worth models which are mostly installed in hospitals, the new machine can be readily installed in a clinic, providing convenience for frontline physicians to find the slightest trace of the deadly tumour which may lead to breast cancer.

Professor Zheng Yongping further explained that the basic principle for elasticity imaging is to map the tissue stiffness so that the tumour region can be clearly viewed. The technique is similar to finger manual palpation, but more accurate with medical imaging and quantitative information. It has been widely reported that ultrasound elasticity imaging together with conventional B-mode imaging can significantly improve the accuracy for breast cancer diagnosis. Ultrasound diagnosis for breast cancer is particularly important for women with age below 50, who are normally not suitable for mammography, as the dense breast tissue may affect the results.

With this breakthrough, the manufacturing cost of Ultrasound Elasticity Imaging System can also be cut down by one-tenth, making this recent development more accessible to the community at large and less developed countries. This is the first time for a China-based brand of ultrasound scanner to have elasticity imaging function, and is a successful example of how PolyU cutting edge applied research can add values to manufacturers in Pearl River Delta Region. PolyU researchers have been working in collaboration with mainland hospitals in Guangdong and Shanghai to put the new system to clinical trials. They are also looking for collaboration opportunities with local hospitals and clinics.

According to recent statistics in the "Breast Cancer Facts in Hong Kong 2008 Report", breast cancer has become a leading cancer in women since 1994 and it is also the fastest growing cancer in incidence among women in Hong Kong. Hong Kong tops Asia countries/cities in terms of crude and age-standardized rates of breast cancer.

Currently about 20 per cent of breast cancer were detected through breast screening modalities such as mammogram, ultrasound and regular clinical breast examination. On the average, eight new cases of breast cancer are diagnosed every day in Hong Kong. There is also an increasing trend of women being diagnosed at an earlier age, particularly during their late 30s or early 40s. PolyU researchers believe their work will lead to more accurate and convenient screening for breast cancer so that early treatment can be provided to more patients.

This project was kicked off in 2006 with a $3 million research grant for "Development of PC- and PDA-based ultrasound measurement and imaging devices", supported by the SAR Government's Innovation and Technology Fund (ITF) and matching fund from industry. In addition to breast cancer diagnosis, application-specific ultrasound devices for the assessment of liver fibrosis, scoliosis, burn scar, diabetic foot, muscle function, articular cartilage degeneration, etc., have also been developed by the PolyU researchers with the supports from ITF, Hong Kong Research Grant Council, and other funds.

# # #

Share article on social media or email:

View article via:

Pdf Print

Contact Author

Professor Zheng Yongping

(852) 2766 7664
Email >