Human Extracellular Matrix Significantly Improves Device Biocompatibility

Histogen, Inc., a regenerative medicine company developing solutions based on the products of newborn cells grown under embryonic conditions, will present findings today at the American Society for Artificial Internal Organs (ASAIO) Annual Conference. Assessment of bioengineered, human extracellular matrix (hECM)-coated polymers showed a statistically significant reduction in immune cell infiltration, foreign body giant cell formation (pÂ0.05) and fibrous capsule formation (pÂ0.001), in addition to improved cell binding and proliferation, representing the potential for this hECM to significantly enhance the biocompatibility of various medical devices.

  • Share on TwitterShare on FacebookShare on Google+Share on LinkedInEmail a friend
The hECM-coated polymers promoted a two-fold increase in normal cell proliferation as compared to uncoated polymers, as well as causing a significant reduction in the host inflammatory and fibrotic response to surgically implanted polymers.

San Diego, CA (PRWEB) May 28, 2010

Histogen, Inc., a regenerative medicine company developing solutions based on the products of newborn cells grown under embryonic conditions, will present findings today at the American Society for Artificial Internal Organs (ASAIO) Annual Conference. Assessment of bioengineered, human extracellular matrix (hECM)-coated polymers showed a statistically significant reduction in immune cell infiltration, foreign body giant cell formation (p<0.05) and fibrous capsule formation (p<0.001), in addition to improved cell binding and proliferation, representing the potential for this hECM to significantly enhance the biocompatibility of various medical devices.

A large number of biomechanically suitable polymers, such as those devices utilized for cardiovascular, urological and hernia repair, fail due to the inflammatory and thrombogenic response by the body. Pre-clinical research on the insoluble, embryonic-like hECM produced through Histogen's unique manufacturing process has shown the capability of the material to significantly reduce these negative responses, and improve the performance of medical devices.

"Device implants represent an important and expanding multi-billion dollar market and have had a major impact on patient care," said Dr. Gail Naughton, CEO and Chairman of the Board at Histogen. "Problems such as fibrous capsule formation, poor tissue ingrowth, and neointimal hyperplasia resulting from suboptimal biocompatibility must be addressed to offer improved patient benefits. We are encouraged by the results with our embryonic-like matrix, which demonstrate its potential for reducing the foreign body reaction, as well as improving and prolonging the life and function of implantable devices."

Testing, which was performed as part of a partnership with the National Research Council's Advanced Materials Division, involved coating of several commonly utilized device materials, including nylon, polypropylene (PPE), and polyethylene terephthalate (PET) nonwoven scaffolds with hECM using several common coating methods. The hECM-coated and uncoated scaffolds were then surgically implanted in the subcutaneous space of SCID mice and histological samples of excised implants were assessed for inflammatory response, cellular infiltration, foreign body giant cells and capsule formation.

"Coating polymers with a naturally-produced, all-human ECM masks the foreign device material and offers a physiological surface which supports healthy tissue infiltration and interaction," said Dr. Michael Zimber, Director of Applied Research at Histogen. "The hECM-coated polymers promoted a two-fold increase in normal cell proliferation as compared to uncoated polymers, as well as causing a significant reduction in the host inflammatory and fibrotic response to surgically implanted polymers."

"Coating Polymers with a Human Extracellular Matrix Significantly Improves Implant Biocompatibility" will be presented by Dr. Zimber at the ASAIO Annual Conference, taking place May 27-29, 2010 in Baltimore.

About Histogen
Histogen, launched in 2007, seeks to redefine regenerative medicine by developing a series of high value products that do not contain embryonic stem cells or animal components. Through Histogen's proprietary bioreactors that mimic the embryonic environment, newborn cells are encouraged to naturally produce the vital proteins and growth factors from which the Company has developed its rich product portfolio. Histogen has two product families - a proprietary liquid complex of embryonic-like proteins and growth factors, and a human Extracellular Matrix (ECM) material, ExCeltrix. For more information, please visit http://www.histogen.com.

###


Contact