Big Data Just Got Smaller: ai-one Announces New Approach to Find Information

A breakthrough method to graphically represent knowledge enables software developers to easily build intelligent agents such as Apple’s SIRI and IBM Watson.

  • Share on TwitterShare on FacebookShare on Google+Share on LinkedInEmail a friend
ai-Fingerprint of a news article

ai-Fingerprint of a news article

The big idea is that we use artificial intelligence to identify clusters and show how each cluster relates to another.

San Diego, CA (PRWEB) November 16, 2011

Artificial intelligence vendor ai-one inc. will unveil a new approach to graphically represent knowledge at the SuperData Summit in San Diego on Wednesday. The discovery, named ai-Fingerprint, is a significant breakthrough because it allows computers to understand the meaning of language much like a person. Unlike other technologies, ai-Fingerprints compresses knowledge in way that can work on any kind of device, in any language and shows how clusters of information relate to each other. This enables almost any developer to use off-the-shelf and open-source tools to build systems like Apple’s SIRI and IBM Watson.

Ondrej Florian, ai-one’s VP of Core Technology invented ai-Fingerprints as a way to find information by comparing the differences, similarities and intersections of information on multiple websites. The approach is dynamic so that the ai-Fingerprint transforms as the source information changes. For example, the shape for a Twitter feed adapts with the conversation. This enables someone to see new information evolve and immediately understand its significance.

“The big idea is that we use artificial intelligence to identify clusters and show how each cluster relates to another,” said Florian. “Our approach enables computers to compare ai-Fingerprints across many documents to find hidden patterns and interesting relationships.”

The ai-Fingerprint is the collection of all the keywords and their associations identified by ai-one’s Topic-Mapper tool. Each keyword and its associations is a coordinate – much like what you would find on a map. The combination of these keywords and associations forms a graph that encapsulates the entire meaning of the document.

The real-world applications are impressive. “It solves a lot of so-called Big Data problems because the system learns by itself,” said Olin Hyde who worked with Florian on the project. “ai-Fingerprints work with existing computer languages and standards. So it only took us about a week to create a generic tool, called BrainBrowser, to find relationships in complex texts – such as summarizing news articles, searching for a job, or identifying new uses for a drug.”

To build BrainBrowser, the team fed ai-Fingerprint results from Topic-Mapper into a natural language processing tool, OpenNLP, so that the computer could understand the rules of grammar then tag parts of speech, chunk phrases and classify words into categories (also called named-entity recognition). The ai-Fingerprint is continuously updated by Topic-Mapper so that the computer can understand how information changes over time – as it does in a human conversation.

Next, the team built a little tool in Java that converted the output into a continuous data feed using an open-standard format called XGMML. This format shares the knowledge of a document as a network of words, sentences and relationships.

Finally, they visualized the result with an open-source bioinformatics tool, called Cytoscape, to show the differences, similarities and identify anomalous information among documents. The result is a graphic representation of knowledge that can show clusters, extract summaries and compare many documents at the same time.

The approach is easy for others to replicate with other technologies. “We used Topic-Mapper with Java, OpenNLP and Cytoscape,” said Florian, “But you could easily do this with Python, MATLAB and NLTK. Heck, you could throw a voice recognition tool on it, like Dragon or Nuance, and you can build an intelligent agent just like SIRI.”

ai-Fingerprint works in any language because Topic-Mapper looks only at byte-patterns. “The approach can give false positives if you don’t teach it the rules of language” warned Florian, “but it is very accurate once it learns the grammar from an outside source of information – such as a natural language processing system or an external database.”

ai-one’s engineering team sees ai-Fingerprints as a way to make it easier, faster and less expensive for their partners to develop intelligent systems. The team is now testing it for applications in advertising, financial analysis, medical research and search engine optimization (SEO).

“Our mission is to make powerful AI available to all developers. This is a big step in that direction,” said ai-one’s chief operating officer Tom Marsh. “We are eager to find academic and consulting partners who can build upon what we started.”

“BrainBrowser is just a minimally viable product (MVP) to prove the concept,” added Hyde. “The sky is the limit for those that want to build commercial applications. Just take the MVP code and customize to your needs.”

A demo of the system can be seen on http://www.ai-one.com and the semsys YouTube channel. ai-one intends to provide the source code for ai-Fingerprint as part of its Topic-Mapper software development kit.

###


Contact

Past News Releases Group Rss Subscribe