New Study Shows Stem Cells’ Promise as Future ALS Treatment

A new study in the current issue of STEM CELLS Translational Medicine demonstrates how human stem cells can successfully engraft, survive and differentiate into mature neurons in the spinal cord of a rat with amyotrophic lateral sclerosis (ALS). The results offer new hope for those suffering from this disease, which generally ends in death within three to five years after diagnoses.

  • Share on TwitterShare on FacebookShare on Google+Share on LinkedInEmail a friend
The transplantation of stem-cell derived neural progenitors may have beneficial effect not only for the replacement of motor neurons already lost, but also in counteracting degeneration and death of motor neurons.

Durham, NC (PRWEB) February 14, 2013

A new study in the current issue of STEM CELLS Translational Medicine demonstrates how human stem cells can successfully engraft, survive and differentiate into mature neurons in the spinal cord of a rat with amyotrophic lateral sclerosis (ALS). The results offer new hope for those suffering from this disease, which generally ends in death within three to five years after diagnoses.

ALS (commonly known as Lou Gehrig’s disease) is characterized by the degeneration and death of the body’s motor neurons, leading to muscle atrophy, paralysis and death due to failure of the respiratory muscles. Despite studies that have improved our understanding of how ALS develops, there are no effective treatments. However, stem cell based-therapies have emerged as a potential solution.

“The transplantation of stem-cell derived neural progenitors may have beneficial effect not only for the replacement of motor neurons already lost, but also in counteracting degeneration and death of motor neurons,” said Roland Pochet, Ph.D., of the Université libre de Bruxelles, Belgium. He headed up the research team that included scientists from INSERM et Université Paris-Sud, and the Pasteur Institute, also in Paris, and Hannover Medical School in Germany.

Spinal motor neurons have been successfully generated from various sources such as embryonic stem cells (ESCs) and neural stem cells (NSCs). Studies also have evaluated the therapeutic potential of bone marrow-derived human mesenchymal stem cells (MSCs) and human umbilical cord blood cells (UCBCs), but modest or no therapeutic benefit was obtained when transplanted in ALS patients.

In theory, induced pluripotent stem cells (iPSCs) derived from patients with neurodegenerative diseases, such as ALS, could be used to reverse the diseases. However, no report had yet described the fate of transplanted iPSCs into an ALS environment.

In the current study, the team wanted to learn how human-induced pluripotent stem cell- (iPSc) derived neural progenitors might affect ALS. The idea was inspired by a previous study in which they injected ALS rats with NSCs derived from other rats. “Although these cells undergo a massive apoptosis, after a few days of injection several survived, crossed the blood-brain barrier, differentiated and engrafted into the animals’ spinal cords,” Dr. Pochet explained.

Sixty days after transplantation, the iPSc-derived cells had efficiently engrafted in the rat’s spinal cord and were surviving, the team reported. Different neural progenitor, tissue and neuronal markers indicated that, over time, the transplanted cells differentiated into cells displaying a neuronal phenotype, the team learned.

“Our results,” Dr. Pochet said, “demonstrate proof-of-principle of survival and differentiation of human iPSc-derived neural progenitors in in vivo ALS environment, offering perspectives for the use of iPSc-based therapy in ALS.”

“This report of the ability of iPSCs to survive and differentiate in an ALS environment is certainly encouraging,” said Anthony Atala, MD, Editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. “The results suggest the potential of cell therapy for the field of neurobiology and disease treatment.”

###

The full article, “Neural progenitors derived from human induced pluripotent stem cells survive and differentiate upon transplantation into a rat model of Amyotrophic Lateral Sclerosis,” can be accessed at http://www.stemcellstm.com

About STEM CELLS Translational Medicine: STEM CELLS TRANSLATIONAL MEDICINE (SCTM), published by AlphaMed Press, is a monthly peer-reviewed publication dedicated to significantly advancing the clinical utilization of stem cell molecular and cellular biology. By bridging stem cell research and clinical trials, SCTM will help move applications of these critical investigations closer to accepted best practices.

About AlphaMed Press: Established in 1983, AlphaMed Press with offices in Durham, NC, San Francisco, CA, and Belfast, Northern Ireland, publishes two other internationally renowned peer-reviewed journals: STEM CELLS® (http://www.StemCells.com), celebrating its 31st year, is the world's first journal devoted to this fast paced field of research. The Oncologist® (http://www.TheOncologist.com), also a monthly peer-reviewed publication, entering its 18th year, is devoted to community and hospital-based oncologists and physicians entrusted with cancer patient care. All three journals are premier periodicals with globally recognized editorial boards dedicated to advancing knowledge and education in their focused disciplines.


Contact