Research and Markets: Cytogenetics - Technologies, Markets and Companies - 2013

This report deals with cytogenetics in a broader sense rather than the classical use mainly to describe the chromosome structure and identify abnormalities related to disease. In the age of molecular biology, it is also referred to as molecular cytogenetics. The report includes summary profiles of 70 companies relevant to cytogenetics along with their 68 collaborations.

  • Share on TwitterShare on FacebookShare on Google+Share on LinkedInEmail a friend
Cytogenetics - Technologies, Markets and Companies - 2013

(PRWEB) February 19, 2013

Research and Markets has announced the addition of Jain PharmaBiotech's new report "Cytogenetics - Technologies, Markets and Companies" to their offering.

This report deals with cytogenetics in a broader sense rather than the classical use mainly to describe the chromosome structure and identify abnormalities related to disease. In the age of molecular biology, it is also referred to as molecular cytogenetics. Historical landmarks in the evolution of cytogenetics are reviewed since the first images of chromosomes were made in 1879. The scope of cytogenetics includes several technologies besides fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), and multicolor FISH. Molecular cytogenetics includes application of nanobiotechnology, microarrays, real-time polymerase chain reaction (PCR), in vivo imaging, and single molecule detection. Bioinformatics is described briefly as it plays an important role in analyzing data from many of these technologies.

FISH remains the single most important technology in cytogenetics. Several innovations are described of which the most important are single copy FISH, in vivo FISH (imaging of nucleic acids in living cells) and nanotechnology-based FISH. The unique character of peptide nucleic acid (PNA) allows these probes to hybridize to target nucleic acid molecules more rapidly and with higher affinity and specificity compared with DNA probes. PNA-FISH is more suited for rapid diagnosis of infections. RNA-FISH and locked nucleic acids (LNAs), are also described.

Microarray/biochip-based technologies for cytogenetics promise to speed up detection of chromosome aberrations now examined by FISH. Other important genomic technologies are whole genome expression array and direct molecular analysis without amplification. Analysis of single-cell gene expression promises a more precise understanding of human disease pathogenesis and has important diagnostic applications. Optical Mapping can survey entire human genomes for insertions/deletions, which account for a significantly greater proportion of genetic variation between closely-related genomes as compared to single nucleotide polymorphisms (SNPs), and are a major cause of gene defects.

The chapter on markets provides a global perspective of the cytogenetics business in the major markets: US, Western Europe (including France, Germany, Italy, Spain, and the UK), and Japan. The total figures for the market are also broken out according to the technologies and major disease areas in which they are applied. Markets figure are given for the year 2012 and estimates are made for the years 2017 and 2022. Advantages and limitations of various technologies have been pointed out throughout the report but this chapter includes SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis of some of the competing technologies including the following: conventional FISH, innovative FISH technologies, PCR-based assays, and single molecule imaging. Unfulfilled needs in cytogenetics market are depicted graphically. Among various technologies, FISH is most advanced and less opportunities for further development than single molecule detection, which is in infancy and has more future potential.

The report includes summary profiles of 70 companies relevant to cytogenetics along with their 68 collaborations. Companies developing innovative technologies as well as those supplying equipment/services/reagents are identified.The report text is supplemented with 27 Tables and 9 figures. Selected 200 references are included in the bibliography.

Key Topics Covered:

Executive Summary

1. Introduction

2. Technologies used for cytogenetics

3. Fluorescent In Situ Hybridization

4. Genomic Technologies relevant to Cytogenetics

5. Molecular Imaging & Single Molecular Detection

6. Role of Nanobiotechnology in Cytogenetics

7. Biomarkers and Cytogenetics

8. Applications of Cytogenetics

9. Cancer Cytogenetics

10. Cytogenetics Markets

11. Companies

12. References

For more information visit http://www.researchandmarkets.com/research/99686w/cytogenetics

Source: Jain PharmaBiotech

Research and Markets
Laura Wood, Senior Manager.
press(at)researchandmarkets.com
U.S. Fax: 646-607-1907
Fax (outside U.S.): +353-1-481-1716


Contact

Follow us on: Contact's LinkedIn