Four Young Researchers from the Same UPCI Lab Receive AACR

Four young investigators from the same laboratory at the University of Pittsburgh Cancer Institute, partner with UPMC CancerCenter, have been recognized with American Association for Cancer Research (AACR) scholar-in-training awards.

Pittsburgh, PA (PRWEB) April 18, 2016 -- Four young investigators from the same laboratory at the University of Pittsburgh Cancer Institute, partner with UPMC CancerCenter, have been recognized with American Association for Cancer Research (AACR) scholar-in-training awards for AACR’s annual meeting in New Orleans, April 16 to 20.

“I am delighted the efforts of my students have been so successful and look forward to the next steps they take in their promising research careers,” said lab leader Shivendra Singh, Ph.D., professor of pharmacology and chemical biology, and UPMC Chair in Cancer Prevention Research, Pitt School of Medicine. His lab focuses on examining enzymes that play a role in drug metabolism and cellular defenses against environmental toxins, as well as exploring the anti-carcinogenic effects of certain natural agents found in edible plants.

Three researchers received scholar-in-training awards in memory of Dr. Lee W. Wattenberg, a pioneer in cancer prevention research, who served as AACR president in 1992. According to AACR, these awards are presented to young investigators presenting high-quality papers relating to cancer prevention research.

Those awardees are:

In this project, Dr. Kim showed that sulforaphane, which naturally occurs in broccoli and other cruciferous vegetables, can inhibit prostate cancer in lab tests because it blocks the effects of c-Myc, a gene that regulates cancer growth. This investigation was supported by grant CA115498 of the National Cancer Institute (NCI), part of the National Institutes of Health.

Dr. Pore and colleagues built on previous work showing that benzyl isothiocyanate (BITC), found in edible cruciferous vegetables such as garden cress, inhibits breast cancer in a mouse model of the disease. In advanced breast cancer, bone loss can occur, which can be deadly with spreading disease. In this project, the team showed that BITC can limit bone breakdown by reducing the production of bone-resorbing cells called osteoclasts. This study was supported by NCI grant CA129347.

Dr. Singh led a project that showed honokiol, a naturally occurring agent derived from magnolia trees, suppressed activity of c-Myc and other genes that play key roles in prostate cancer growth. This study was supported by NCI grants CA101753 and CA115498.
In addition, a fourth researcher from the Singh Lab received a $1,500 AACR-Triple Negative Breast Cancer Foundation scholar-in-training award.

Dr. Roy showed in animal models that BITC’s effects in suppressing Her-2-driven breast tumors could be enhanced with the addition of an agent that inhibits the protein AKT. This study was supported by NCI grant CA129347.
Contact Information
Amy Charley
UPMC
+1 412-738-3511

Wendy Zellner
412-586-9777

Online Web 2.0 Version
You can read the online version of this press release here.