ProMIS Neurosciences Announces Results in Two Presentations at the 2016 Alzheimer’s Association International Conference

Results of study indicate that multiple monoclonal antibodies directed against five novel AD targets are viable therapeutic candidates, showing selective binding to the oligomeric forms of Amyloid beta

Toronto, ON (PRWEB) July 28, 2016 -- ProMIS Neurosciences (“ProMIS” or the “Company”), a company focused on the discovery and development of precision treatments for neurodegenerative diseases, today announced results in two presentations on its recent therapeutic developments at the Alzheimer’s Association International Conference on July 27th, 2016 in Toronto, Ontario, Canada.

“Our results presented at the AAIC meeting indicate that multiple monoclonal antibodies (“mAbs”) directed against five novel AD targets are viable therapeutic candidates, as they showed selective binding to the oligomeric forms of Amyloid beta (“Aβ”), with little or no binding to Aβ monomer” stated ProMIS CSO, Neil Cashman, adding “We look forward to final validation of therapeutic candidates in cadaveric brain tissue from AD patients to select those that show no binding to plaque, but bind specifically and uniquely to the prion-like strains of Aβ (soluble oligomeric forms), a widely recognized root cause of AD”.

The first presentation, entitled A Computational Method to Predict Disease-Specific Epitopes in Aβ, and Its Application to Oligomer-Selective Antibodies for Alzheimer’s Immunotherapy, is a poster authored by Dr. Steven Plotkin (et al.), the Company’s Chief Physics Officer. The authors, using one of the Company’s unique, proprietary discovery platforms, Collective Coordinates, predicted five distinct epitopes on pathogenic prion-like forms Aβ. Results of the predictive methodology indicate that these oligomer-specific epitopes are conformationally distinct, in other words shaped differently from the same primary sequences in either Aβ monomer or fibrils, the latter representing the main constituent of Aβ plaque. ProMIS has now raised over 300 antibody clones designed to be oligomer-selective; yielding about 50 lead antibodies, roughly 10 for each epitope.

The second presentation entitled Novel Amyloid-β Oligomer-Specific Epitopes: A Hypothesis Driven Approach to Alzheimer's Immunotherapeutics, is a poster authored by University of British Columbia’s Dr. Judith Silverman (et al.), whose work was conducted in the lab of Dr. Neil Cashman, the Company’s Chief Science Officer. The authors describe the screening process for initial identification of mAb therapeutic candidates and demonstrated that they selectively bind to the previously mentioned five novel AD targets. Reactivity (binding) to Aβ oligomers was evident for mAbs targeting all five epitope targets, while reactivity to Aβ monomer was virtually absent for mAbs directed against three of five epitopes, and significantly reduced for the mAbs targeting the other two epitopes.

About ProMIS Neurosciences, Inc.
The mission of ProMIS Neurosciences is to discover and develop precision medicine therapeutics for effective treatment of neurodegenerative diseases, in particular Alzheimer’s disease and ALS.

ProMIS Neurosciences’ proprietary target discovery engine is based on the use of two, complementary techniques. The Company applies its thermodynamic, computational discovery platforms—ProMIS™ and Collective Coordinates — to predict novel targets known as Disease Specific Epitopes (DSEs) on the molecular
surface of misfolded proteins. Using this unique "precision medicine" approach, ProMIS Neurosciences is developing novel antibody therapeutics and specific companion diagnostics for Alzheimer’s disease and ALS. The company has also developed two proprietary technologies to specifically identify very low levels of misfolded proteins in a biological sample. In addition, ProMIS Neurosciences owns a portfolio of therapeutic and diagnostic patents relating to misfolded SOD1 in ALS, and currently has three preclinical monoclonal antibody therapeutics against this target.

The information in this release may contain certain forward-looking information. Such information involves known and unknown risks, uncertainties and other factors that may cause actual results, performance or achievements to be materially different from those implied by statements herein, and therefore these statements should not be read as guarantees of future performance or results. All forward-looking statements are based on the Company's current beliefs as well as assumptions made by and information currently available to it as well as other factors. Readers are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date of this press release. Due to risks and uncertainties, including the risks and uncertainties identified by the Company in its public securities filings, actual events may differ materially from current expectations. The Company disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise.

For further information please consult the Company's website at:
www.promisneurosciences.com

Follow us on Twitter
Like us on LinkedIn

NATIONAL Equicom
Michael Moore: mmoore(at)national(dot)ca
Abby Garfunkel: agarfunkel(at)national(dot)ca

or contact

Dr. Elliot Goldstein
President and Chief Executive Officer, ProMIS Neurosciences Inc.
Tel. 415 341-5783
Elliot.goldstein(at)promisneurosciences(dot)com
Contact Information
Elliot Goldstein
ProMIS Neurosciences, Inc.
+1 4153415783

Eugene Williams
ProMIS Neurosciences, Inc.
6174600978

Online Web 2.0 Version
You can read the online version of this press release here.