Quantum Nano & Consciousness Centre Explains Information Processing Using Multi-particle Quantum Teleportation Modelling

A group of researchers at Quantum Nano & Consciousness Centre, Dayalbagh, Agra (India) have provided a versatile model of quantum information processing using oriented graph theory.

Agra, India (PRWEB) May 02, 2017 -- For all those out there, who have been searching for the means to perceive the true nature of reality, consciousness, or cosmic existence, mathematics may be the way to go. That is what Dayal Pyari Srivastava, Vishal Sahni and Prem Saran Satsangi, working from the Dayalbagh Educational Institute in Agra say in their article “From n-qubit multi-particle quantum teleportation modelling to n-qudit contextuality based quantum teleportation and beyond” published recently in the International Journal of General Systems (12 April 2017). One of the authors, namely, Revered Professor Satsangi is perhaps the only living stalwarts of the likes of Koenig, Reed, Tokad, and Keshvan, who has mastered the skill of Graph theoretic application to almost any system.

In their latest paper, the authors have used graph theory to model a three particle entangled [quantum] teleportation system. By teleportation, they do not mean the kind of teleportation you remember watching or reading about in science fiction television shows (Star Trek) and works of fiction (Timeline), where humans or objects would molecularly disassemble in one place and magically reassemble, intact and whole, in another place or dimension. Rather, quantum teleportation refers to a process by which quantum information (the exact state of an atom or photon) can be principally transmitted from one location to another through, as the authors put forward, three particle quantum entangled states. Quantum teleportation is a form of communication; it provides a way of transporting a qubit (a unit of quantum information) from one location to another, without movement of physical particles. So, how does that tell us about the ultimate source of consciousness?

In their Consciousness System Model, Srivastava et al. argue that quantum computing models should not be limited to only three states. Instead, a step forward should be taken to generalize it to higher dimensions, “tending to infinity, and that is the hope which brings us to the threshold of being face to face mathematically in abstract terms with the ultimate source of consciousness.”

Scientists, thus far, have not looked beyond Planck’s length to measure particles, which grow so subtle that there are not any physical instruments to measure them. Srivastava et al. state that it is for this reason that the scientists are limited in their understanding, “whereas mathematics which is part of science, shows that particles are there which are subtler, subtler and the subtlest ones. They move to infinity, they are most subtle, they become very small or subtle when we are close to zero; infinity is the macrocosm problem. Scientists can neither access infinity, nor zero, but none would say mathematics is not a part of science.”

Srivastava et al. have employed Topology based Graph Theory, which “provides that we may stretch space, we may compress space, we may twist space as we like and quantum mechanics will come to monitor the smallest world as well as the largest macroscopic phenomena, and this follows through mathematics.” Incidentally, winners of Physis Nobel Prize for the year 2016, namely, Kosterlitz, Haldane and Thouless, had also applied Topology in their award winning work.

Highlighting the versatility of Topological Graph Theoretic Modelling, on the basis of abstract mathematics, Srivastava, et al. have emphasized that their model can aid in developing, alongside super-intelligent machines,
supermen imbued with such values and quality that they prevent misuse of these machines in the future (Sir Roger Penrose and Nick Bostrom).

The work of these three authors has been presented and discussed at international and national scientific forums with leading names in the world of consciousness studies today like Sir Roger Penrose and Professor (Dr.) Stuart Hameroff, amongst many others, who are working at the forefront (both mathematicians and scientists). Regarding subatomic particles, the authors further explain that both Max Tegmark (MIT physicist and cosmologist) and Sir Roger Penrose (mathematical physicist, mathematician and philosopher of science) concur that “the ultimate reality is the mathematical structure of the universe and one can reach ultimate reality,” as finer and finer particles occur, supporting the Big Bang theory. Penrose “figures that there have been a series of Big Bangs”. Tegmark visualizes that, as a result, there have to be “very high temperatures characteristic of a fusion reactor as is present in the sun.” Yet, Tegmark’s doubts, as to how anything could survive at those high temperatures, is countered by Srivastava et al., for, as they explain, “what has to survive [in that environment] are (infinitesimally) small particles, not the physical body that we possess; this body has to be given up much earlier. The physical body cannot withstand those temperatures” and it is the spirit force, which does.

As the authors conclude, “We find particles going to even a smaller size, subtler than Max Planck’s dimension of 10−35 m and those are the ones which belong to the Universe of the Mind and the Universe of the Spirit Force, and they have no problem in withstanding the heat and light. They perceive it as very blissful, musical and the ultimate abode for it (the spirit or the soul)” (Satsangi. Consciousness: Integrating Eastern and Western Perspectives. 2016)
Contact Information
Malvika Gupta & Sandeep Paul
QNCC
http://www.dei.ac.in/dei/quantumNano
+91 8755033300

Online Web 2.0 Version
You can read the online version of this press release here.