Implementation, Impact, and Updating of Rapid Blood Culture Identification System in a Community Hospital Network, Upcoming Webinar Hosted by Xtalks

This webinar will review the advantages of using rapid molecular technology for the detection of bloodstream infections in a hospital setting and why it is important to have the broadest coverage possible for a molecular test. Learn why this technology is superior to conventional methods and how it can ultimately streamline appropriate therapy for each patient.

TORONTO (PRWEB) September 11, 2019 -- Bloodstream infections (BSI) leading to sepsis are among the top 10 causes of mortality in the US. However, patients may not receive the most targeted therapy in time because traditional microbiological methods for pathogen detection require days to complete. Rapid molecular detection of these pathogens has shown improvement in patient outcomes, but not all molecular panels have a broad-based coverage of pathogens causing BSI.

Rapid molecular testing for positive blood cultures was introduced to better serve the patient population with potentially life-threatening BSI. The goal was to ensure that patients received the best care, as soon as possible. Delivering faster results can assist in antimicrobial stewardship utilization of the right drug, with the right dose, at the right time. Now that broader panels are available for use, implementation of a new set of rapid molecular panels for detection of more organisms causing BSI can further drive additional positive outcomes in this very important population of patients.

On Friday, September 27, 2019 at 12pm EDT (5pm BST/UK), Kevin M. McNabb, PhD, MT, Director of Microbiology, Immunology and Molecular Testing at New Hanover Regional Medical Center will lead a free webinar to review the data collected from the last five years to current date. He will show how moving from traditional microbiology methods to rapid molecular technology, and then furthermore to a molecular technology with broader coverage, surpassed expectations in many ways while highlighting some of the common challenges and solutions associated with the moving from conventional methods to rapid molecular technologies.

Other topics of discussion include:
• An overview of the implementation process for rapid molecular testing methods for pathogen identification in bloodstream infections from conventional microbiology methods in a community hospital network
• A cost justification for adoption of more expensive molecular testing methods over traditional microbiology methods
• The benefits of implementing a rapid molecular diagnostic test for blood culture identification including better antibiotic stewardship, improved patient outcomes and potential reductions in length of stay
• Why broader inclusivity of pathogen detection is critical and how to justify making a switch to a different molecular method
• Reporting of antimicrobial resistance genes to aid medical staff in providing appropriate therapy to patients faster

For more information or to register for this free event, visit Implementation, Impact, and Updating of Rapid Blood Culture Identification System in a Community Hospital Network.

ABOUT XTALKS
Xtalks, powered by Honeycomb Worldwide Inc., is a leading provider of educational webinars to the global life science, food and medical device community. Every year thousands of industry practitioners (from life science, food and medical device companies, private & academic research institutions, healthcare centers, etc.) turn to Xtalks for access to quality content. Xtalks helps Life Science professionals stay current with industry developments, trends and regulations. Xtalks webinars also provide perspectives on key issues from top industry thought leaders and service providers.

To learn more about Xtalks visit http://xtalks.com.

For information about hosting a webinar visit http://xtalks.com/why-host-a-webinar/.
Contact Information
Candice Tang
Xtalks
http://www.xtalks.com
1 (416) 977-6555

Online Web 2.0 Version
You can read the online version of this press release here.