Study Shows Therapeutic Potential of Fat-derived Stem Cells Declines As Donor’s Age Rises

A new study released today in STEM CELLS Translational Medicine demonstrates that the therapeutic value of stem cells collected from fat declines when the cells come from older patients. Mesenchymal stromal cells (MSCs), stem cells collected from either bone marrow or adipose tissue, are considered one of the most promising therapeutic agents for regenerating damaged tissue because of their proliferation potential and ability to be coaxed into different cell types.

  • Share on TwitterShare on FacebookShare on Google+Share on LinkedInEmail a friend
These findings are significant because the successful development of cell therapies depends on a thorough understanding of how age may affect the regenerative potential of autologous cells.

Durham, NC (PRWEB) December 18, 2013

A new study released today in STEM CELLS Translational Medicine demonstrates that the therapeutic value of stem cells collected from fat declines when the cells come from older patients.

“This could restrict the effectiveness of autologous cell therapy using fat, or adipose-derived mesenchymal stromal cells (ADSCs), and require that we test cell material before use and develop ways to pretreat ADSCs from aged patients to enhance their therapeutic potential,” said Anastasia Efimenko, M.D., Ph.D. She and Nina Dzhoyashvili, M.D., were first authors of the study led by Yelena Parfyonova, M.D., D.Sc., at Lomonosov Moscow State University, Moscow.

Cardiovascular disease remains the most common cause of death in most countries. Mesenchymal stromal cells (MSCs), stem cells collected from either bone marrow or adipose tissue, are considered one of the most promising therapeutic agents for regenerating damaged tissue because of their proliferation potential and ability to be coaxed into different cell types. Importantly, they also have the ability to stimulate the growth of new blood vessels, a process known as angiogenesis.

Adipose tissue in particular is considered an ideal source for MSCs because it is largely dispensable and the stem cells are easily accessible in large amounts using a minimally invasive procedure. ADSCs have been used in several clinical trials looking at cell therapy for heart conditions, but most of the studies employed cells taken from relatively healthy young donors rather than sick, older ones — the typical patient when it comes to heart disease.

“We knew that aging and disease itself may negatively affect MSC activities,” Dr. Dzhoyashvili said. “So the aim of our study was to investigate how patient age affects the properties of ADSCs, with special emphasis on their ability to stimulate angiogenesis.”

The team analyzed age-associated changes in ADSCs collected from patients of different age groups, including some with coronary artery disease and some without. The results showed that ADSCs from the older patients in both groups expressed various age markers, including shorter telomeres, and, thus, confirmed that ADSCs did age. Telomeres, the regions of repetitive DNA at the end of a chromosome, protect it from deterioration.

“We showed that ADSCs from older patients both with and without coronary artery disease produced significantly less amounts of angiogenesis-stimulating factors compared with the younger patients in the study and their angiogenic capabilities lessened,” Dr. Efimenko concluded. “The results provide new insight into molecular mechanisms underlying the age-related decline of stem cells’ therapeutic potential.”

“These findings are significant because the successful development of cell therapies depends on a thorough understanding of how age may affect the regenerative potential of autologous cells,” said Anthony Atala, M.D., editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine.

###

The full article, “Adipose-derived stromal cells (ADSC) from aged patients with coronary artery disease keep MSC properties but exhibit characteristics of aging and have an impaired angiogenic potential,” can be accessed at http://stemcellstm.alphamedpress.org/content/early/2013/12/18/sctm.2013-0014.abstract.

About STEM CELLS Translational Medicine: STEM CELLS TRANSLATIONAL MEDICINE (SCTM), published by AlphaMed Press, is a monthly peer-reviewed publication dedicated to significantly advancing the clinical utilization of stem cell molecular and cellular biology. By bridging stem cell research and clinical trials, SCTM will help move applications of these critical investigations closer to accepted best practices.

About AlphaMed Press: Established in 1983, AlphaMed Press with offices in Durham, NC, San Francisco, CA, and Belfast, Northern Ireland, publishes two other internationally renowned peer-reviewed journals: STEM CELLS® (http://www.StemCells.com), in its 31th year, is the world's first journal devoted to this fast paced field of research. The Oncologist® (http://www.TheOncologist.com), also a monthly peer-reviewed publication, in its 18th year, is devoted to community and hospital-based oncologists and physicians entrusted with cancer patient care. All three journals are premier periodicals with globally recognized editorial boards dedicated to advancing knowledge and education in their focused disciplines


Contact