Production of synthetic SIRT1 as a dietary supplement may help prolong life, states Chemist Direct

Share Article

Cellular research has opened new doors to increasing the life-span of cell telomeres through synthetic stimulation of SIRT1720 and iPS cell reproduction. According to Chemist Direct, the possibilities of using SIRT1 as a supplement may help reduce age-related diseases and lengthen the life-span.

Cell regeneration

Cell regeneration

Over the course of the human life span the body ages and becomes less able to repair itself, allowing it to become more prone to disease and illness.

Over the course of the human life span the body ages and becomes less able to repair itself, allowing it to become more prone to disease and illness. In the ever developing field of scientific discovery researchers have become intrigued with the concept of finding a way to slow down age-related diseases and prolonging life through the use of medicine. Since the Japanese scientist Shinya Yamanaka ( first discovered iPS cells in adult tissue and pioneered mature cell regeneration, this field in medicine has become one of the most rapidly developing fields in biomedicine.

A research team at the National Institute on Ageing at the National Institutes of Health in the US has discovered a “promising strategy” to arrest ageing by looking at a chemical called SRT1720 which activates a particular protein called Sirtuin 1 (SIRT1). Previous research has demonstrated that activating SIRT1 can have health benefits in various organisms, and it has been proposed as an anti-ageing protein. This study, published in the March edition of Research Journal: Cell ( focused on comparing the lifespan, health and diseases of mice fed the same diet, but with or without the addition of a SRT1720.

Overall they found mice fed a normal diet but with the supplement had a longer natural lifespan on average (about five weeks longer). During their lifetime, additional tests also suggested they had improved muscle function and coordination, improved metabolism, improved glucose tolerance, decreased body fat and cholesterol. All in all this suggests that giving the mice this supplement could protect them from the equivalent of metabolic syndrome, a series of risk factors associated with conditions such as heart disease and type 2 diabetes.

A study published today in the journal Stem Cell Reports ( and carried out by the Spanish National Cancer Research Centre's Telomeres and Telomerase Group, reveals that the SIRT1 protein is needed to lengthen and maintain telomeres during cell reprogramming. SIRT1 also guarantees the integrity of the genome of stem cells that come out of the cell reprogramming process; these cells are known as iPS cells (induced Pluripotent Stem cells).

The nature of iPS cells, however, is causing intense debate. The latest research shows that chromosome aberrations and DNA damage can accumulate in these cells. "The problem is that we don't know if these cells are really safe," says María Luigia De Bonis, a postdoctoral researcher who has done a large part of the work.

Researchers did not look at whether SIRT1 may cause side effects or complications so it is currently unclear whether SIRT1 would be safe in humans, let alone effective, but this interesting research has opened doors to pharmaceutical companies to develop dietary supplements that can help provide anti-aging pills, especially those who suffer hereditary degenerative diseases. These ongoing scientific studies will help shed light on how cell reprogramming guarantees the healthy functioning of stem cells. This knowledge will help to overcome barriers that come out of the use of iPS cells so they may be used in regenerative medicine.

Share article on social media or email:

View article via:

Pdf Print

Contact Author

Maria Camanes Fores
Chemist Direct
+44 1215414952 Ext: 205
Email >
Follow us on
Visit website