Reducing Stroke Damage May be Next Application for OCT Technology Now Widely Used in Eye and Vision Healthcare

Share Article

A new article by University of Washington researchers in the journal Neurophotonics, published by SPIE, the international society for optics and photonics, reports on use of optical coherence tomography (OCT) to obtain high-resolution images showing blood-flow dynamics in the brain before, during, and after stroke-like states. The information may ultimately enable clinicians to reduce stroke damage.

OCT, widely used in ophthalmology and other medical fields, holds potential to reveal how blood flows in the brain during stroke, (© Credit: Ruikang Wang et al.)

OCT, widely used in ophthalmology and other medical fields, holds potential to reveal how blood flows in the brain during stroke, (© Credit: Ruikang Wang et al.)

They demonstrated a biologically initiated rescue mechanism in response to stroke.

An optical technology already widely used in ophthalmology and other medical fields holds potential to reveal how blood flows in the brain during stroke, providing information that could someday guide new treatments and reduce stroke-induced damage to the brain.

A new article published in the journal Neurophotonics describes work at the University of Washington (UW) using optical coherence tomography (OCT) to render high-resolution images and information about blood-flow dynamics over a broad region of the brain before, during, and after stroke-like states. Neurophotonics is published by SPIE, the international society for optics and photonics.

“OCT is a well-established medical imaging technique that uses light waves to generate three-dimensional pictures of tissue structure,” said Ruikang Wang, professor of bioengineering and ophthalmology at the UW. “Widely applied over the past two decades in clinical ophthalmology, it recently has been adapted for brain vascular imaging.”

In “Vasodynamics of pial and penetrating arterioles in relation to arteriolo-arteriolar anastomosis after focal stroke,” Wang and co-authors Utku Baran and Yuandong Li describe using OCT-based optical microangiography to reveal brain-vessel dynamics in tremendous detail during real-time experimental stroke.

“Dr. Wang has been a leader in developing OCT to measure microvascular angiograms and is now applying the methodology to explore the microvascular dynamics of blood vessels in the brain during stroke. This enables the imaging of far more vessels in a shorter period of time, and offers a greater depth penetration,” noted Neurophotonics Editor-in-Chief David Boas of the Massachusetts General Hospital and Harvard Medical School.

Not only were the UW researchers able to achieve high-resolution images of in vivo vascular networks across a large area, but they also were able to evaluate the vessel diameters, red-blood-cell velocity, and total blood-flow change across the area. In doing so, Wang said, they demonstrated a biologically initiated rescue mechanism in response to stroke. The new information could potentially provide guidance to clinicians treating stroke patients.

“Our key finding uncovers a non-uniform regulation event in penetrating arterioles – variance in the dilation among important vessels circulating blood throughout the brain,” Wang said. “Specifically, active dilation of penetrating arterioles during stroke requires strong connections -- anastomosis presence – and dilation and therefore blood flow fail in the areas farther away from an anastomosis. Abundance of anastomoses may prevent or delay permanent neural damage by supplying blood to penetrating arterioles and recovering rescuable tissue called penumbra.”

With the enhanced imaging capability, Wang and his colleagues may discover as-yet-unknown mechanisms by which the brain regulates blood flow to brain tissue, Boas said. “OCT, which already is a billion-dollar industry, is likely to go on to play an increasingly important role in the neurosciences,” he said.

The work was supported in part by National Institutes of Health grants.

Neurophotonics is published in print and digitally in the SPIE Digital Library, which contains nearly 430,000 articles from SPIE journals, proceedings, and books, with approximately 18,000 new research papers added each year.

About SPIE

SPIE is the international society for optics and photonics, an educational not-for-profit organization founded in 1955 to advance light-based science and technology. The Society serves nearly 264,000 constituents from approximately 166 countries, offering conferences and their published proceedings, continuing education, books, journals, and the SPIE Digital Library in support of interdisciplinary information exchange, professional networking, and patent precedent. SPIE provided more than $4 million in support of education and outreach programs in 2014. http://www.spie.org

Share article on social media or email:

View article via:

Pdf Print

Contact Author

Amy Nelson, Public Relations Manager
SPIE
+1 (360) 685-5478
Email >
Visit website