Berkeley Clean Technology Company Announces Breakthrough for LENR Power Devices

Share Article

Controllable-on-Demand, Reproducible, Transportable, Scalable LENR Validated in Third-Party Tests of Brillouin Energy's most advanced Isoperibolic Hydrogen Hot Tube™ LENR Reactor

Brillouin IPR HHT LENR system

“By using standard industrial manufacturing processes for our reactor test systems, we have identified an engineering pathway for manufacturing Brillouin Energy’s IPB HHT™ reactor prototypes,” said Robert Godes, CTO and Co-Founder of Brillouin Energy.

Researchers at SRI International are reporting that they have successfully replicated “over unity” amounts of thermal energy (heat) for Brillouin Energy Corporation’s most advanced Isoperibolic (“IPB”) Hydrogen Hot Tube™ (HHT™) reactor test systems based on controlled low energy nuclear reactions (“LENR”). Researchers at SRI conducted a series of third-party tests of Brillouin Energy’s IPB HHT™ LENR reactor test systems from March to December 2016. Dr. Francis Tanzella, principal investigator and Manager of the Low Energy Nuclear Reactions Program, was assigned to SRI’s testing of Brillouin Energy’s LENR systems and conducted all of the third-party validation work.

In its Interim Progress Report, SRI summarizes its extensive testing of five identical Brillouin Energy metallic reactor cores, which produced the same over-unity controlled heat outputs, turning the reaction heat on and off repeatedly. "Brillouin Energy appears to have achieved its most groundbreaking test results to-date," the Report states.

Data from the SRI International test runs show LENR heat outputs up to several watts were repeatedly produced from positive coefficients of performance (COPs) in the range of 1.2X to 1.45X. The Report continues that LENR heat being independently validated with positive COPs is significant: “The LENR coefficients of performance (COPs) may be considered low and small scale however, it would be a mistake to discount them, in light of the accuracy of their calorimetry, the consistent repeatability of their production, their controllability, and the reproducibility and refinement of their manufacturing techniques, specifications, and components, all leading to the same repeated results. Moreover, the transportability of the system is another remarkable achievement”.

“By using standard industrial manufacturing processes for our reactor test systems, we have identified an engineering pathway for manufacturing Brillouin Energy’s IPB HHT™ reactor prototypes,” said Robert Godes, Chief Technology Officer and Co-Founder of Brillouin Energy Corp.

In 2017, Brillouin Energy will continue to work with SRI International in the testing process to help it to engineer and develop its IPB HHT™ reactor test systems, with the goal of evolving them towards LENR prototype equipment systems, which potentially may generate commercial scale LENR Heat on demand for industrially useful applications.

“We are on the cusp of a new era of cheap, abundant and reliable power from LENR technologies, at a time when the United States and many other countries are re-defining their commitments to mitigate the impacts from climate change,” said Robert W. George, Chief Executive Officer, Brillouin Energy.

Brillouin Energy’s LENR technology includes a proprietary method of electrical stimulation of nickel-metal conductors using its Q-Pulse™ control system. The process stimulates the system to produce LENR reactions, which generate excess heat and helium. The excess heat produced is a product of hydrogen and a nickel-metal catalyst. The Q-Pulse™ control system stimulation is the key to maintaining the reaction. Other than the heat output, there are no (zero) toxic or CO2 emissions of any kind.

The SRI Interim Progress Report summarizes all of the data and conclusions from SRI International’s nine months of testing of Brillouin Energy’s IPB HHT™ LENR reactor systems. To view the Report, visit http://brillouinenergy.com/science/experimental-results/.

About Brillouin Energy:
Brillouin Energy is a clean-technology company based in Berkeley, California, which is developing, in collaboration with Stanford Research International (SRI), an ultra-clean, low-cost, renewable energy technology that is capable of producing commercially useful amounts of thermal energy from LENR. For more on Brillouin Energy, please visit http://www.brillouinenergy.com.

About SRI International
SRI International (http://www.sri.com) creates world-changing solutions making people safer, healthier, and more productive. SRI, a research center headquartered in Menlo Park, California, works primarily in advanced technology and systems, biosciences, computing, and education. SRI brings its innovations to the marketplace through technology licensing, spin-off ventures and new product solutions.

Share article on social media or email:

View article via:

Pdf Print

Contact Author

Grant Draper
CapstreamX
+1 415-745-0254
Email >
Visit website