Ocean Floor Geophysics Inc. Supports Successful Project Combining AUV and USV Mothership to Survey the Ocean’s Depths

Share Article

Ocean Floor Geophysics Inc. (OFG) works with the Shell Ocean Discovery XPRIZE GEBCO-NF Alumni Team to advance the state of the art in autonomous seafloor survey through operations support, expertise, and OFG’s HUGIN Autonomous Underwater Vehicle (AUV) Chercheur.

OFG AUV Chercheur launches from USV Maxlimer

This is the first time that a combined Hugin AUV and USV mothership have been used for launch, synchronized seafloor survey, and recovery.

The GEBCO-NF Alumni Team has completed the Technology Readiness Tests of the Shell Ocean Discovery XPRIZE using a combined Unmanned Surface Vessel (USV) and Autonomous Underwater Vehicle (AUV) system. The goal of the XPRIZE challenge is to advance ocean technologies for rapid, unmanned and high-resolution ocean exploration and discovery.

This is a world first using the Hugin AUV and a USV mothership for launch, synchronized autonomous AUV survey operations, and recovery of the AUV back in to the USV. The project demonstrated that combined AUV and USV systems are a viable option for future offshore survey and inspection projects.

The Team chose to work together with OFG to integrate the HUGIN AUV Chercheur, in to the system. Chercheur is an industry-leading survey and pipeline inspection AUV equipped with a multibeam, camera, sub-bottom profiler, OFG Self Compensating Magnetometer (SCM), water chemistry sensors, and the HISAS 1032, a deep-water interferometric synthetic aperture sonar, that was used to collect bathymetric and imagery data for this project.

The USV SEA-KIT Maxlimer was designed by Hushcraft Ltd to act as a surface support vessel for the AUV, including the capacity to launch and recover the AUV and to provide subsea communications and positioning. SEA-KIT is a rugged, impact-safe and self-righting USV that can carry a deployable and retrievable payload of up to 2.5 tons. It has passive motion damping, a stable single-compartment flooding system and a self-deploying and stowing sea anchor to ease and ensure safe operations. The autonomous capabilities of the USV were provided by the K-Mate controller developed by Kongsberg Maritime and the Norwegian Defence Research Establishment (FFI).

In addition to the development of the AUV and USV systems used for data acquisition, the Team developed a complete data processing workflow using Teledyne CARIS and ESRI software allowing all the data products to be delivered within 24 hours. The workflow developed was highly automated from data download to delivery of a complete ArcGIS database of the entire survey area, including HiSAS imagery at 4 cm resolution, multibeam bathymetry, interferometric bathymetry and areas of interest reprocessed HiSAS imagery at 2 cm resolution.

Autonomous AUV seafloor survey, with an AUV launch and recovery (human-in-the-loop), with the USV autonomously tracking the AUV for a complete survey mission while being monitored from a remote shore station, were demonstrated to be a viable option for future offshore survey and inspection projects. The technology, processes and procedures developed for this project are a big step towards larger scale implementation of these concepts.

Share article on social media or email:

View article via:

Pdf Print

Contact Author

Matthew Kowalczyk
@OceanFloorGeo
since: 05/2016
Follow >
Ocean Floor Geophysics
since: 05/2016
Like >
Ocean Floor Geophysics Inc.

Visit website