Accessibility Statement Skip Navigation
  • Why PRWeb
  • How It Works
  • Who Uses It
  • Pricing
  • Login
  • GDPR
  • Create a Free Account
Return to PRWeb homepage
  • News
  • Resources
  • Contact
When typing in this field, a list of search results will appear and be automatically updated as you type.

Searching for your content...

No results found. Please change your search terms and try again.
  • News in Focus
      • Browse News Releases

      • All News Releases
      • Multimedia Gallery

      • All Multimedia
      • All Photos
      • All Videos
  • Business & Money
      • Auto & Transportation

      • Aerospace, Defense
      • Air Freight
      • Airlines & Aviation
      • Automotive
      • Maritime & Shipbuilding
      • Railroads and Intermodal Transportation
      • Supply Chain/Logistics
      • Transportation, Trucking & Railroad
      • Travel
      • Trucking and Road Transportation
      • View All Auto & Transportation

      • Business Technology

      • Blockchain
      • Broadcast Tech
      • Computer & Electronics
      • Computer Hardware
      • Computer Software
      • Data Analytics
      • Electronic Commerce
      • Electronic Components
      • Electronic Design Automation
      • Financial Technology
      • High Tech Security
      • Internet Technology
      • Nanotechnology
      • Networks
      • Peripherals
      • Semiconductors
      • View All Business Technology

      • Entertain­ment & Media

      • Advertising
      • Art
      • Books
      • Entertainment
      • Film and Motion Picture
      • Magazines
      • Music
      • Publishing & Information Services
      • Radio & Podcast
      • Television
      • View All Entertain­ment & Media

      • Financial Services & Investing

      • Accounting News & Issues
      • Acquisitions, Mergers and Takeovers
      • Banking & Financial Services
      • Bankruptcy
      • Bond & Stock Ratings
      • Conference Call Announcements
      • Contracts
      • Cryptocurrency
      • Dividends
      • Earnings
      • Earnings Forecasts & Projections
      • Financing Agreements
      • Insurance
      • Investments Opinions
      • Joint Ventures
      • Mutual Funds
      • Private Placement
      • Real Estate
      • Restructuring & Recapitalization
      • Sales Reports
      • Shareholder Activism
      • Shareholder Meetings
      • Stock Offering
      • Stock Split
      • Venture Capital
      • View All Financial Services & Investing

      • General Business

      • Awards
      • Commercial Real Estate
      • Corporate Expansion
      • Earnings
      • Environmental, Social and Governance (ESG)
      • Human Resource & Workforce Management
      • Licensing
      • New Products & Services
      • Obituaries
      • Outsourcing Businesses
      • Overseas Real Estate (non-US)
      • Personnel Announcements
      • Real Estate Transactions
      • Residential Real Estate
      • Small Business Services
      • Socially Responsible Investing
      • Surveys, Polls and Research
      • Trade Show News
      • View All General Business

  • Science & Tech
      • Consumer Technology

      • Artificial Intelligence
      • Blockchain
      • Cloud Computing/Internet of Things
      • Computer Electronics
      • Computer Hardware
      • Computer Software
      • Consumer Electronics
      • Cryptocurrency
      • Data Analytics
      • Electronic Commerce
      • Electronic Gaming
      • Financial Technology
      • Mobile Entertainment
      • Multimedia & Internet
      • Peripherals
      • Social Media
      • STEM (Science, Tech, Engineering, Math)
      • Supply Chain/Logistics
      • Wireless Communications
      • View All Consumer Technology

      • Energy & Natural Resources

      • Alternative Energies
      • Chemical
      • Electrical Utilities
      • Gas
      • General Manufacturing
      • Mining
      • Mining & Metals
      • Oil & Energy
      • Oil and Gas Discoveries
      • Utilities
      • Water Utilities
      • View All Energy & Natural Resources

      • Environ­ment

      • Conservation & Recycling
      • Environmental Issues
      • Environmental Policy
      • Environmental Products & Services
      • Green Technology
      • Natural Disasters
      • View All Environ­ment

      • Heavy Industry & Manufacturing

      • Aerospace & Defense
      • Agriculture
      • Chemical
      • Construction & Building
      • General Manufacturing
      • HVAC (Heating, Ventilation and Air-Conditioning)
      • Machinery
      • Machine Tools, Metalworking and Metallurgy
      • Mining
      • Mining & Metals
      • Paper, Forest Products & Containers
      • Precious Metals
      • Textiles
      • Tobacco
      • View All Heavy Industry & Manufacturing

      • Telecomm­unications

      • Carriers and Services
      • Mobile Entertainment
      • Networks
      • Peripherals
      • Telecommunications Equipment
      • Telecommunications Industry
      • VoIP (Voice over Internet Protocol)
      • Wireless Communications
      • View All Telecomm­unications

  • Lifestyle & Health
      • Consumer Products & Retail

      • Animals & Pets
      • Beers, Wines and Spirits
      • Beverages
      • Bridal Services
      • Cannabis
      • Cosmetics and Personal Care
      • Fashion
      • Food & Beverages
      • Furniture and Furnishings
      • Home Improvement
      • Household, Consumer & Cosmetics
      • Household Products
      • Jewelry
      • Non-Alcoholic Beverages
      • Office Products
      • Organic Food
      • Product Recalls
      • Restaurants
      • Retail
      • Supermarkets
      • Toys
      • View All Consumer Products & Retail

      • Entertain­ment & Media

      • Advertising
      • Art
      • Books
      • Entertainment
      • Film and Motion Picture
      • Magazines
      • Music
      • Publishing & Information Services
      • Radio & Podcast
      • Television
      • View All Entertain­ment & Media

      • Health

      • Biometrics
      • Biotechnology
      • Clinical Trials & Medical Discoveries
      • Dentistry
      • FDA Approval
      • Fitness/Wellness
      • Health Care & Hospitals
      • Health Insurance
      • Infection Control
      • International Medical Approval
      • Medical Equipment
      • Medical Pharmaceuticals
      • Mental Health
      • Pharmaceuticals
      • Supplementary Medicine
      • View All Health

      • Sports

      • General Sports
      • Outdoors, Camping & Hiking
      • Sporting Events
      • Sports Equipment & Accessories
      • View All Sports

      • Travel

      • Amusement Parks and Tourist Attractions
      • Gambling & Casinos
      • Hotels and Resorts
      • Leisure & Tourism
      • Outdoors, Camping & Hiking
      • Passenger Aviation
      • Travel Industry
      • View All Travel

  • Policy & Public Interest
      • Policy & Public Interest

      • Advocacy Group Opinion
      • Animal Welfare
      • Congressional & Presidential Campaigns
      • Corporate Social Responsibility
      • Domestic Policy
      • Economic News, Trends, Analysis
      • Education
      • Environmental
      • European Government
      • FDA Approval
      • Federal and State Legislation
      • Federal Executive Branch & Agency
      • Foreign Policy & International Affairs
      • Homeland Security
      • Labor & Union
      • Legal Issues
      • Natural Disasters
      • Not For Profit
      • Patent Law
      • Public Safety
      • Trade Policy
      • U.S. State Policy
      • View All Policy & Public Interest

  • People & Culture
      • People & Culture

      • Aboriginal, First Nations & Native American
      • African American
      • Asian American
      • Children
      • Diversity, Equity & Inclusion
      • Hispanic
      • Lesbian, Gay & Bisexual
      • Men's Interest
      • People with Disabilities
      • Religion
      • Senior Citizens
      • Veterans
      • Women
      • View All People & Culture

  • Hamburger menu
  • Cision PRWeb provides efficient communication tools to continuously engage with target audiences across multiple online channels
  • Create a Free Account
    • ALL CONTACT INFO
    • Contact Us


      11AM ET Sunday – 8PM ET Friday

  • Send a Release
  • Sign up
  • Log in
  • Resources
  • RSS
  • GDPR
  • News in Focus
    • Browse All News
    • Multimedia Gallery
  • Business & Money
    • Auto & Transportation
    • Business Technology
    • Entertain­ment & Media
    • Financial Services & Investing
    • General Business
  • Science & Tech
    • Consumer Technology
    • Energy & Natural Resources
    • Environ­ment
    • Heavy Industry & Manufacturing
    • Telecomm­unications
  • Lifestyle & Health
    • Consumer Products & Retail
    • Entertain­ment & Media
    • Health
    • Sports
    • Travel
  • Policy & Public Interest
  • People & Culture
    • People & Culture
  • Send a Release
  • Sign up
  • Log in
  • Resources
  • RSS
  • GDPR
  • Send a Release
  • Sign up
  • Log in
  • Resources
  • RSS
  • GDPR
  • Send a Release
  • Sign up
  • Log in
  • Resources
  • RSS
  • GDPR

Tokyo Institute of Technology research: Catalyst redefines rate limitations in ammonia production
  • USA - English


News provided by

Center for Public Affairs and Communications

Mar 30, 2015, 05:00 ET

Share this article

Share toX

Share this article

Share toX

Ab initio simulations of N2 interaction with the Ru/C12A7 catalysts.
Ab initio simulations of N2 interaction with the Ru/C12A7 catalysts.

Tokyo, Japan (PRWEB UK) 30 March 2015 -- Researchers at Tokyo Institute of Technology report on the development of a catalyst that is so effective at promoting dissociation of the nitrogen bond in ammonia production reactions that it is no longer the step limiting the rate of the reaction.

the bottleneck in the NH3 synthesis reaction is shifted from the N-N triple bond dissociation to the formation of nitrogen-hydrogen species

Post this

Ammonia (NH3) is crucial for the industrial synthesis of fertilizers and pharmaceuticals so that ways to improve its production from molecular nitrogen and hydrogen are in high demand. So far the main challenge has been breaking the triple bond in nitrogen molecules, which is the strongest bond in a molecule of two atoms. Now a collaboration of researchers in Japan, the UK and the US have developed a catalyst that is so effective towards the break of the nitrogen triple bond and found that this is no longer the rate-limiting step of the reaction.

Certain oxides can be very effective at enhancing the catalytic activity of ruthenium and iron but they are unstable in ammonia synthesis conditions. Recently the electride 12CaO•7Al2O3:e- (C12A7:e-) - an ionic compound with an electron acting as the negative ion – was found to be stable at room temperature. The discovery prompted Hideo Hosono and colleagues at Tokyo Institute of Technology and the Japan Science and Technology Agency in Japan, University College London in UK and Pacific Northwest National Laboratory in US to investigate Ru/C12A7:e- as a catalyst in ammonia production.

The researchers examined the N2 isotope exchange and hydrogen adsorption/desorption reactions. They observed a remarkable level of catalytic activity at less than half the activation energy of other catalysts. In addition the catalyst did not degrade due to hydrogen poisoning as is usually the case for ruthenium-based catalysts.

Further studies and density functional calculations suggested a mechanism for the reaction. “Fast N2 cleavage is ensured by highly efficient electron transfer from C12A7:e- to N2 molecules adsorbed on the Ru nanoparticles,” the researchers conclude in their report. “As a result, the bottleneck in the NH3 synthesis reaction is shifted from the N-N triple bond dissociation to the formation of nitrogen-hydrogen species.”

Background

Haber-Bosch
Both iron and ruthenium are well known catalysts for the break of the nitrogen bond. However ruthenium-based catalysts are highly prone to hydrogen poisoning where hydrogen adsorbs to the catalyst, so that for over a century iron-based catalysts have remained central to the widely implemented ammonia production process developed by Fritz Haber and Carl Bosch in 1909.

Alkali and alkaline earth metal oxides enhance ruthenium and iron catalysts by donating electrons into the ‘antibonding orbitals’ of the nitrogen, weakening the bond. This is referred to as the electronic promoting effect but has so far been difficult to harness for ammonia synthesis because the oxides are unstable in the reaction conditions.

Catalyst structure
The promoter the researchers investigated is a combination of oxides of calcium (an alkaline earth metal) and aluminium in the form of an electride - 12CaO•7Al2O3:e- (C12A7:e-). The same ionic compound can be used with oxides or hydrides acting as the anion instead of an electron as in the electride studied, but these are far less effective.

The crystal structure of C12A7:e- consists of a positively charged framework having the chemical formula [Ca24Al28O64]4+, and four extra framework electrons accommodated in the cages as counter ions. This structure has uniquely versatile characteristics for the exchange of negatively charged ions.

Shifting the bottleneck
The researchers monitored N2 isotope exchange and hydrogen adsorption/desorption reactions. From these observations the researchers determined that breaking the nitrogen triple bond was no longer the rate-limiting step of ammonia synthesis with the Ru/C12A7:e-. Instead they suggest that the subsequent formation of the nitrogen-hydrogen bond in ammonia is now the bottleneck in the process.

The researchers also calculated the order of the reaction from the effect on the rate as the concentrations of the chemicals were varied. The catalyst had a lower reaction order for nitrogen than other catalysts suggesting a different mechanism, and that the nitrogen populates the catalyst more densely than for other catalysts.

Catalyst stability
The Ru/C12A7:e- catalyst was not subject to hydrogen poisoning and remained active at high pressure. The researchers suggest that the fast formation of ammonia on the ruthenium surface limits hydrogen being incorporated into the catalyst so that its activity remains unchanged.

Further studies suggest that the reversible hydrogen storage-release properties are responsible for the reaction mechanism of the new catalyst. This mechanism switches at temperatures below 593 K at which temperatures the catalyst becomes prone to hydrogen poisoning like other catalysts.

Reference
Title: Electride support boosts nitrogen dissociation over ruthenium Q1 catalyst and shifts the bottleneck in ammonia synthesis.
Journal: Nature Communications, Online publication on 30 March 2015 at 18:00 Japan Standard time
Digital Object Indicator (DOI): 10.1038/ncomms7731

Authors: Masaaki Kitano1, Shinji Kanbara2, Yasunori Inoue2, Navaratnarajah Kuganathan3, Peter V. Sushko4,5,Toshiharu Yokoyama1,5, Michikazu Hara2,5 & Hideo Hosono1,2,5,6

1Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
2Materials andStructures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
3 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
4 Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
5 ACCEL, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
6 Frontier Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.

Further information
Asuka Suzuki
Center for Public Affairs and Communications, Tokyo Institute of Technology
2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
E-mail: media(at)jim(dot)titech(dot)ac(dot)jp
URL: http://www.titech.ac.jp/english/
Tel: +81-3-5734-2975
Fax: +81-3-5734-3661

About Tokyo Institute of Technology
As one of Japan’s top universities, Tokyo Institute of Technology seeks to contribute to civilization, peace and prosperity in the world, and aims at developing global human capabilities par excellence through pioneering research and education in science and technology, including industrial and social management. To achieve this mission, we have an eye on educating highly moral students to acquire not only scientific expertise but also expertise in the liberal arts, and a balanced knowledge of the social sciences and humanities, all while researching deeply from basics to practice with academic mastery. Through these activities, we wish to contribute to global sustainability of the natural world and the support of human life.

Website: http://www.titech.ac.jp/english/

Tokyo Institute of Technology, Center for Public Affairs and Communications, http://www.titech.ac.jp/english/, +81 (0)3-5734-2975, [email protected]

Modal title

Contact PRWeb

  • 11AM ET Sunday – 8PM ET Friday
  • Contact Us

About PRWeb

  • About PRWeb
  • Partners
  • Partnership Programs
  • Editorial Guidelines
  • Resources

Why PRWeb

  • Why PRWeb
  • How It Works
  • Who Uses It
  • Pricing

Accounts

  • Create a Free Account
  • Log in
  • Contact Us

Do not sell or share my personal information:

  • Submit via [email protected] 
  • Call Privacy toll-free: 877-297-8921

Contact Cision

Products

About

My Services
  • All News Releases
  • Online Member Center
  • ProfNet
Cision Distribution Helpline
888-776-0942
  • Legal
  • Site Map
  • RSS
  • Cookie Settings
Copyright © 2025 Cision US Inc.